Генетика
http://www.mirbiologa.ru

Notice: Trying to get property of non-object in /var/www/yameds/data/www/mirbiologa.ru/components/com_content/views/category/view.html.php on line 43
Генетика


Взаимодействие генов


Если отдельная клетка и организм представляют собой целостные системы, где все биохимические и физиологические процессы строго согласованы и взаимосвязаны, то прежде всего потому, что генотип интегрирован, т. е. является системой взаимодействующих генов.

Взаимодействие аллельных генов. Аллельные гены вступают в отношения типа доминантности — рецессивности. Это означает, что в генотипе существуют гены, реализующиеся в виде признака,— доминантные, и гены, которые не смогут проявиться в фенотипе,— рецессивные. В сериях множественных аллелей эти отношения приобретают достаточно сложный характер. Один и тот же ген может выступать как доминантный по отношению к одной аллели и как рецессивный по отношению к другой. Например, ген гималайской окраски у кроликов доминантен по отношению к гену белой окраски и рецессивен по отношению к гену сплошной окраски «шиншилла».

Взаимодействие неаллельных генов. Известно много примеров, когда гены влияют на характер проявления определенного неаллельного гена или на саму возможность проявления этого гена.
У душистого горошка есть ген (А), обусловливающий синтез бесцветного предшественника пигмента — пропигмента. Ген В определяет синтез фермента, под действием которого из пропигмента образуется пигмент. Цветки душистого горошка с генотипом ааВВ и AAbb имеют белый цвет: в первом случае есть фермент, но нет пропигмента, во втором — есть пропигмент, но нет фермента, переводящего пропигмент в пигмент.
При скрещивании двух растений душистого горошка с белыми цветками получится пурпурная окраска цветков:

Таким образом, образование такого, казалось бы, элементарного признака, как окраска цветков, зависит от взаимодействия по крайней мере двух неаллельных генов, конечные продукты деятельности которых (белок, фермент) взаимно дополняют друг друга.

С другой формой взаимодействия генов ознакомимся на примере развития окраски плодов тыквы. У тыквы ген А определяет желтый цвет плодов, его рецессивная аллель (а) — зеленый цвет. Однако окрашенными плоды тыквы будут только в том случае, если в генотипе растений отсутствует доминантный ген из другой аллельной пары — ген В. Ген В подавляет окрашивание плодов тыквы, а его рецессивная аллель b не мешает окраске развиваться. Следовательно, при генотипе ААВВ плоды будут белыми, при генотипе ААbb — желтыми, при ааbb — зелеными. Такие формы взаимодействия неаллельных генов, как взаимодополняемость их действия или подавление одним геном неаллельного ему гена, касаются качественных признаков. Однако многие свойства организмов — масса и рост животных, яйценоскость кур, жирность молока и его количество у скота, содержание витаминов в растениях и т. п.— альтернативными не являются. Такие признаки называют количественными. Они определяются неаллельными генами, действующими на один и тот же признак или свойство. Чем больше в генотипе доминантных генов, от которых зависит какой-либо количественный признак, тем ярче этот признак проявляется. У пшеницы красный цвет зерен обусловлен действием трех генов: А1, А2, А3. При генотипе А1А1А2А2А3А3 окраска зерен наиболее интенсивная, при генотипе а1а1а2а2а3а3 пшеница имеет белый цвет. В зависимости от числа доминантных генов в генотипе можно получить переходы между интенсивно красной и белой окраской (смотрите рисунок ниже).

Количество пигмента в коже человека также зависит от числа доминантных неаллельных генов, действующих в одном направлении. Например, у супружеской пары негра и белой женщины рождаются дети с промежуточным цветом кожи (мулаты). У супружеской пары мулатов дети по цвету кожи имеют окраски всех типов — от черной до белой, что определяется комбинацией трех пар аллелей. По типу такого взаимодействия наследуются многие признаки животных и растений: содержание сахара в корнеплодах свеклы, длина колоса, длина початка кукурузы, плодовитость животных и др.

Таким образом, многие признаки развиваются при взаимодействии нескольких генов. Однако нередко наблюдается противоположное явление: один ген влияет на многие признаки. У мышей описан мутантный ген, вызывающий нарушения в строении хрящевых клеток. В результате появляются многочисленные отклонения от нормального развития черепа, грудины, позвонков и других частей скелета. Отсутствие покровных костей черепа приводит к кровоизлияниям в мозг. Комплекс этих нарушений обусловливает гибель новорожденных мышей. У человека аномалия пальцев сопровождается нарушениями в строении хрусталика. Здесь в основе множественного эффекта также лежит действие одного гена, вызывающего дефект соединительной ткани. Часто встречается множественное действие гена, при котором наряду с изменением тех или иных внешних признаков меняется жизнеспособность особи. При этом в большинстве случаев жизнеспособность снижается и лишь в редких случаях повышается. Выше отмечалось, что развитие самого простого признака — результат целой цепи химических превращений. Вследствие мутации может быть блокирован любой этап биосинтеза. Чем более ранний этап биосинтеза блокируется, тем больше промежуточных соединений не может синтезироваться и тем больше фенотипических проявлений такой мутации. Принято считать, что практически каждый ген влияет на проявление других генов или на несколько признаков организма. Широта фенотипической выраженности гена, т. е. его множественного действия, зависит от времени вступления гена в действие в ходе онтогенеза. Итак, выражение «ген определяет развитие признака» в значительной степени условно, так как проявление гена зависит от других генов — от генотипической среды.



 
Сцепленное наследование генов


Мендель изучил наследование только семи пар признаков у душистого горошка. Его законы подтвердились на самых разных видах организмов, т. е. было признано, что эти законы носят всеобщий характер. Однако позже было замечено, что у душистого горошка два признака — форма пыльцы и окраска цветков — не дают независимого распределения в потомстве. Потомки оставались похожими на родителей. Постепенно таких исключений из третьего закона Менделя накапливалось все больше. Стало ясно, что принцип независимого распределения в потомстве и свободного комбинирования распространяется не на все гены. Действительно, у любого организма признаков очень много, а число хромосом невелико.
В каждой хромосоме должно локализоваться много генов. Каковы же закономерности наследования генов, локализованных в одной хромосоме? Вопрос этот был изучен выдающимся американским генетиком Т. Морганом.
Предположим, что два гена — А и В находятся в одной хромосоме и организм, взятый для скрещивания, гетерозиготен по этим генам:

В анафазе I мейотического деления гомологичные хромосомы расходятся к разным полюсам и образуются два типа гамет

вместо четырех, как должно быть при дигибридном скрещивании в соответствии с третьим законом Менделя.

При скрещивании с организмом, рецессивным по обоим генам aabb, получается расщепление 1:1

вместо ожидаемого при дигибридном анализирующем скрещивании 1:1:1:1. Такое отклонение от независимого распределения означает, что гены, локализованные в одной хромосоме, наследуются совместно.

Явление совместного наследования генов, локализованных в одной хромосоме, называется сцепленным наследованием, а локализация генов в одной хромосоме — сцеплением генов. Сцепленное наследование генов, локализованных в одной хромосоме, установил Морган.
Таким образом, третий закон Менделя применим лишь к наследованию аллельных пар, находящихся в негомологичных хромосомах.

Все гены, входящие в состав одной хромосомы, передаются по наследству совместно и составляют группу сцепления. Поскольку в гомологичных хромосомах находятся одинаковые гены, группу сцепления составляют две гомологичные хромосомы. Число групп сцепления у данного вида организмов соответствует числу хромосом в гаплоидном наборе. Так, у человека 46 хромосом в диплоидном наборе — 23 группы сцепления, у дрозофилы 8 хромосом — 4 группы сцепления, у гороха 14 хромосом — 7 групп сцепления. Однако при анализе наследования сцепленных генов было обнаружено, что в определенном проценте случаев сцепление может нарушаться.

Вспомним, что в профазе I мейотического деления гомологичные хромосомы конъюгируют. В этот момент может произойти обмен участками гомологичных хромосом:

Предположим, что в одной из гомологичных хромосом локализуются пять известных нам доминантных генов, а в другой — пять их рецессивных аллелей. Если проследить распределение в потомстве двух генов — А и В, то в результате расхождения гомологичных хромосом в анафазе I мейотического деления дигетерозиготный организм в случае сцепления генов А и В должен давать два типа гамет: АВ и ab. Но если в результате кроссинговера в некоторых клетках происходит обмен участками хромосом между генами А и В, то появляются гаметы Ab и аВ, и в потомстве образуются четыре группы фенотипов, как при свободном комбинировании генов. Отличие заключается в том, что числовое отношение фенотипов не соответствует отношению 1:1:1:1, установленному для дигибридного анализирующего скрещивания.

Таким образом, сцепление генов может быть полным и неполным. Причина нарушения сцепления — кроссинговер, т. е. перекрест хромосом в профазе I мейотического деления. Чем дальше друг от друга расположены гены в хромосоме, тем выше вероятность перекреста между ними и тем больше процент гамет с перекомбинированными генами. В генетике принято определять расстояние между генами в процентах гамет, при образовании которых в результате кроссинговера произошла перекомбинация генов в гомологичных хромосомах. Кроссинговер — важный источник комбинативной генетической изменчивости.

 
Анализирующее скрещивание

Анализирующее скрещивание. Разработанный Менделем гибридологический метод изучения наследственности позволяет установить, гомозиготен или гетерозиготен организм, имеющий доминантный фенотип по исследуемому гену (или исследуемым генам). Для этого скрещивают особь с неизвестным генотипом и организм, гомозиготный по рецессивной аллели:

В случае гомозиготности доминантной особи потомство от такого скрещивания будет единообразным и расщепление не произойдет. Иная картина получится, если доминантная форма гетерозиготна:

Расщепление потомства по фенотипу произойдет в отношении 1:1. Такое расщепление — прямое доказательство образования у одного из родителей двух типов гамет, т. е. его гетерозиготности. При гетерозиготности организма по двум генам анализирующее скрещивание выглядит так:

Анализирующее скрещивание

В потомстве образуются четыре группы фенотипов в отношении 1:1:1:1.

 
Третий закон Менделя, закон независимого комбинирования

Третий закон Менделя, закон независимого комбинирования.

Изучение Менделем наследования од­ной   пары   аллелей   дало   возможность установить  ряд важных генетических закономерностей: явление доми­нирования, неизменность рецессивных аллелей у гибри­дов, расщепление потомства гибридов в отношении 3:1, а также предположить, что гаметы генетически чисты, т. е. содержат только один ген из аллельной пары. Одна­ко организмы различаются по многим генам. Устано­вить закономерности наследования двух пар альтерна­тивных признаков и более можно путем дигибридного или полигибридного скрещивания.

Для дигибридного скрещивания Мендель взял гомо­зиготные растения гороха, отличающиеся по двум ге­нам — окраски семян (желтые, зеленые) и формы семян (гладкие, морщинистые). Доминантные признаки — желтая окраска (А) и гладкая форма (В) семян. Каж­дое растение образует один сорт гамет по изучаемым аллелям:

При слиянии гамет все потомство будет единообразным:

При образовании гамет у гибрида из каждой пары аллельных генов в гамету попадает только один, при этом вследствие случайности расхождения отцовских и материнских хромосом в I делении мейоза ген А может попасть в одну гамету с геном В или с геном b. Точно так же ген а может оказаться в одной гамете с геном В или с геном b. Поэтому у гибрида образуются четыре типа гамет: АВ, Ав, аВ, ав. Во время оплодотворения каждая из четырех типов гамет одного организма слу­чайно встречается с любой из гамет другого организма. Все возможные сочетания мужских и женских гамет можно легко установить с помощью решетки Пеннета, в которой по горизонтали выписываются гаметы одного родителя, по вертикали — гаметы другого родителя. В квадратики вносятся генотипы зигот, образующиеся при слиянии гамет - смотрите рисунок ниже.

Наследование двух пар альтернативных признаков у гороха

Легко подсчитать, что по фенотипу потомство делит­ся на 4 группы: 9 желтых гладких, 3 желтых морщини­стых, 3 зеленых гладких, 1 желтая морщинистая. Если учитывать результаты расщепления по каждой паре признаков в отдельности, то получится, что отношение числа желтых семян к числу зеленых и отношение гладких семян к морщинистым для каждой пары равно 3:1. Таким образом, при дигибридном скрещивании каждая пара признаков при расщеплении в потомстве ведет себя так же, как при моногибридном скрещива­нии, т. е. независимо от другой пары признаков.

При оплодотворении гаметы соединяются по прави­лам случайных сочетаний, но с равной вероятностью для каждой. В образующихся зиготах возникают раз­личные комбинации генов.

Независимое распределение генов в потомстве и возникновение различных комбинаций этих генов при дигибридном скрещивании возможно лишь в том слу­чае, если пары аллельных генов расположены в разных парах гомологичных хромосом:

Теперь можно сформулировать третий закон Менде­ля: при скрещивании двух гомозиготных особей, отлича­ющихся друг от друга по двум и более парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.


Законы Менделя служат основой для анализа рас­щепления в более сложных случаях: при различиях осо­бей по трем, четырем парам признаков и более.

Если родительские формы различаются по одной паре признаков, то во втором поколении наблюдается расщепление в отношении 3:1, для дигибридного скре­щивания это будет (3:1) 2, для тригибридного — (3:1) 3 и т. д. Можно рассчитать также число типов гамет, образующихся у гибридов:

 
Гипотеза чистоты гамет

Гипотеза чистоты гамет. Мендель предположил, что при образовании гибридов наследственные факторы не смешиваются, а сохраняются в неизменном виде. В гибриде присутствуют оба фактора — доминантный и рецессивный, но в виде признака проявляется доминантный наследственный фактор, рецессивный же подавляется. Связь между поколениями при половом размножении осуществляется через половые клетки — гаметы. Следовательно, необходимо допустить, что каждая гамета несет только один фактор из пары. Тогда при оплодотворении слияние двух гамет, каждая из которых несет рецессивный наследственный фактор, будет приводить к образованию организма с рецессивным признаком, проявляющимся фенотипически. Слияние же гамет, каждая из которых несет доминантный фактор, или же двух гамет, одна из которых содержит доминантный, а другая рецессивный фактор, будет приводить к развитию организма с доминантным признаком. Таким образом, появление во втором поколении рецессивного признака одного из родителей может быть только при двух условиях: 1) если у гибридов наследственные факторы сохраняются в неизменном виде; 2) если половые клетки содержат только один наследственный фактор из аллельной пары.
Расщепление потомства при скрещивании гетерозиготных особей Мендель объяснил тем, что гаметы генетически чисты, т. е. несут только один ген из аллельной пары. Гипотезу (теперь ее называют законом) чистоты гамет можно сформулировать следующим образом: при образовании половых клеток в каждую гамету попадает только один ген из аллельной пары.
Почему и как это происходит? Известно, что в каждой клетке организма имеется совершенно одинаковый диплоидный набор хромосом. Две гомологичные хромосомы содержат два одинаковых гена. Генетически «чистые» гаметы образуются следующим образом:

Чистыее гаметы


При слиянии мужских и женских гамет получается гибрид с диплоидным набором хромосом:

Слияние гамет

Как видно из схемы, половину хромосом зигота получает от отцовского организма, половину — от материнского.
В процессе образования гамет у гибрида гомологичные хромосомы во время I мейотического деления также попадают в разные клетки:

Образование гамет

По данной аллельной паре образуются два сорта гамет. При оплодотворении гаметы, несущие одинаковые или разные аллели, случайно встречаются друг с другом. В силу статистической вероятности при достаточно большом количестве гамет в потомстве 25 % генотипов будут гомозиготными доминантными, 50 % — гетерозиготными, 25 % — гомозиготными рецессивными, т. е. устанавливается отношение 1АА:2Аа:1аа.
Соответственно по фенотипу потомство второго поколения при моногибридном скрещивании распределяется в отношении 3:1 (3/4 особей с доминантным признаком, 1/4 особей с рецессивным).
Таким образом, при моногибридном скрещивании цитологическая основа расщепления потомства — расхождение гомологичных хромосом и образование гаплоидных половых клеток в мейозе.

Второй Закон Менделя

 
<< Первая < Предыдущая 1 2 3 4 Следующая > Последняя >>

Страница 2 из 4
При использовании материала ссылка на сайт "Мир биолога" обязательна!